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I. INTRODUCTION 

The  - function introduced by Suland et.al. [4] defined and represented in the following form: 
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We shall use the following notation: 
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II. NOTATIONS AND RESULTS USED 

In this paper  
d

dx
  is denoted by xD . Thus  
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Where the operator xxD applied on f (x) means the function of x  is differentiated with respect to x and then 

multiplied by x ; ( )
r

xxD means that the operation by xxD is repeated r times; xD x applied on f (x) means that 

the function of x  is first multiplied by x and then the product is differentiated with respect to x ; 
r

xD  means that 

the operation by xD is repeated r times. 

 

III. MAIN RESULTS 

The following results on derivatives of Aleph ( ) -function are derived in this section : 

Formula 1 
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For 0h  and. λ ∈ C 

Formula 2 
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Where , C( 1,2,..., )jk j k  = and h is real and positive. 

Formula 3 
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Where , C( 1,2,..., )jk j k  = and h is real and positive. 

Proofs: 

On using the contour integral (1.1), in the L.H.S. of (3.1), we get  
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Where ( )s are given by (1.2).  

On applying differentiation under the integral sign, we obtain  
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It can easily be shown  
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On substituting  (3.5) in (3.4) and using (1.1), we get the result (3.1) 

To prove (3.2), express the left-hand side using the contour integral (1.1), we obtain    
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On applying differentiation under the integral sign, we obtain 
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  and using (1.1), we get the result (3.2) 

Similarly, we can obtain the proof of result (3.3) 
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IV. SPECIAL CASES 

(i) When 1 2 ... 0rk k k= = = =  in (3.2), we get 
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For 0h  and C  

(ii) When 1 2 ... 0rk k k= = = =  in (3.3), we get 
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For 0h  and C . 

(iii) If we set 1i = in (3.1), the  -function reduces to  I -function  and we get 
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From  I – Function we can easily obtain various results given in [1, 2, 3]. 
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